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The influence of radiative transfer on the propagation 
of a temperature wave in a stratified 

diffusing atmosphere 

By R. M. GOODY 
Harvard University, Cambridge, Massachusetts 

(Received 7 March 1960) 

An approximate solution is presented to the problem of the propagation of a 
temperature wave through a stratified medium which both diffuses and radiates 
heat. The solution is a combination of two waves whose relative amplitudes vary 
with the distance from the lower boundary. Apparent diffusivities computed 
from phase lag and attenuation coefficients can differ greatly from each other 
and can vary with height even if the actual diffusivity does not. 

An example, using parameters simulating the earth’s atmosphere, suggests 
that analysis of the propagation of the diurnal wave upward from the earth’s 
surface is likely to be inadequate if radiative effects are not considered. 

1. Introduction 
Rider &, Robinson (1951) have shown that, in not uncommon circumstances 

in the lowest layers of the atmosphere, radiation is comparable in importance to 
convection in the control of temperature and humidity. A theoretical treatment 
of the problem of the upward propagation of the diurnal temperature wave 
should therefore include radiative transfer terms. The only attempt to do so 
has been that of Brunt (1944, p. 129) who employed an analogy between radiative 
and diffusive transfer, similar to that introduced earlier by Eddington into 
astrophysical problems for very great optical depths. This is, however, not 
suitable for this particular problem. The problem will be re-examined using more 
acceptable approximations. 

Goody (1 956) has given approximate equations for a grey-absorbing, stratified 
atmosphere. While the grey approximation is a poor one for the earth’s atmo- 
sphere it is valuable, on heuristic grounds, to examine the problem of the pro- 
pagation of a diurnal temperature wave in a grey absorbing atmosphere in order 
to discover the essential physical effects of this mode of heat transfer. 

Following classical treatments of atmospheric diffusion (Priestley 1959), it 
will be assumed that turbulent diffusion can be described by a simple conduction 
equation. Moreover, the turbulent conductivity will be ,treated as a constant 
throughout the region under consideration. It is not necessary to dwell upon the 
inadequacies of this assumption but, provided that they are not forgotten, they 
should not obscure the role of radiative transfer as a modifying influence, which 
is the question under consideration here. 
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stratified fluid is (Goody 1956), 
The approximate equation governing the radiative flux in a horizontally 

dzFr dB 
dz2 dz 
-- - 47TQK - + 3K2& 

where F, = radiative heat flux, z = height, 

7 T ~  = 4ge3, cr = Stefan’s constant, 

K = volume absorption coefficient. 8 = temperature, 

It will be assumed that the range of 8 is sufficiently small for Q to be considered 
constant. At the lower boundary (z  = 0) the boundary condition is 

_ -  ” - -~KF, .  
dz 

The vertical turbulent heat flux is 
d0 
dz 

Ft = -k-, (3) 

where k is the turbulent ‘conductivity’. The solution to the problem 

F = F,+F, = const., (4 )  

appropriate to a semi-infinite atmosphere whose lower boundary ( z  = 0) is 
a black body, can be written (Goody 1956) 

The non-dimensional quantities g and x are, respectively, a modified optical 
depth which takes some account of the diffuse nature of the radiation, and the 
ratio between Brunt’s radiative conductivity and the turbulent conductivity. 
Equation ( 5 )  shows that for x > 1 a temperature boundary layer can develop. 

2. Propagation of a harmonic thermal wave 
If the temperature is time-dependent, then in place of ( 4 )  we have 

aF ae 
- - -8%’ aZ - 

where s is the heat content of the fluid per cm3 per degree. From (l), (3), (6) 
and (8), we find 

(9) 

Steady-state harmonic solutions of the type 

0 = 6, eiWt e-(a+ih) { 
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will be sought. Transient solutions are not considered and only the time- 
dependent part of the solution is discussed. Solutions of (4) should be added for 
completeness, but oscillations about the time mean will be correctly described 
by (10). Only positive values of a will be allowed 80 that the amplitude of the 
wave will tend to zero a t  great optical distances from the lower boundary. This 
is the upper boundary condition. 

I I I I I 

1.0 

0.5 

0 
-1 0 +1 +2 + 3  

~og10 t 
FIGURE 1. Attenuation and phase-lag coefficients for x 1.  

Substituting a/at = iw in (9) we obtain 

where 
4n-Q~ 

5 = 7 .  
Substituting (10) into (1 1) with 

a2-b2 = a, 2ab = P, 
we find, by equating real and imaginary parts, 

1-a 

X 

P =  5 , 
(+ - ( 1  - 2a) 

(11) 

(12) 

Equation (14) has only two real roots, both positive, for which p is also posi- 
tive. Consequently, if a is always positive then b must also be positive. The wave 
is therefore propagated with a phase lug which increases linearly with height. 
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Since two real roots of (4) exist and since the boundary conditions are sufficient 
to determine the amplitudes of both solutions, we have the required solution to 
our problem. However, the roots of (14) are difficult to evaluate except when 
x 9 1 or x < 1. Discussion will be restricted to these two cases, since they suffice 
to demonstrate the essential physical features of the problem. 

The case x 9 1 

One root of a lies between x and 1 +x while the other Iies between 0 and 1. In 
these intervals the roots can be located by successive approximation. If sub- 
scripts 1 and 2 are used to designate the two solutions, there results to order l/x, 

These relations are shown graphically in figure 1. 

T h e  case x < 1 

One root of a now lies between 1 and 1 +x and the other between 0 and x. To 
order x the two roots are given by 

3. Boundary conditions 

derive equation (1). Eliminating Fr between (2) and (1) we have, at 6 = 0, 
The boundary condition ( 2 )  is consistent with the approximation used to 

From (3), (4), (8) and (10) we have 

and 

Eliminating aFr/ac and a2Fr/8c2 from (17), (18) and (19), we find, at t; = 0, 

- i -[ ip- i~]  j 3  ta2e = 

Thisyi the lower boundary condition for 0. (10) can now be written 

e 
ell 
- = ( p ,  + iq,) e id  e-(%+iW 5 + ( p1 + iq,) eiml e+as+ib'z) 5, 
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where 

and 1)1+1)2  q1+q2 = = O Y 1  1. 

Substituting (21) into (20) and equating real and imaginary parts gives two 
further relationships, which completely determine the solution. There results 

- 0 5  I I I I 
-1 0 +1 +2 + 3  

log10 5 
FIGURE 2. Amplitudes of the wave components for x 1. 

P1 Pa 91 92 

6+0 1 - O*340ta 0.3406 0.4646 - 0.4646 
[-+a 0.945-4 1 - 0.946-* 0*946-) - 0.945-4 

TABLE 1. Amplitudes for x % 1 and for f large and small. 

where 11, I, and R,, R, are the two alternative values of 

and 

Since. e have already restricted our attention to very large and very small x, 
we wi J not determine the amplitudes for all values of the variable. For x e 1, 
the solution, to order x, is 

p1= q1 = q 2  = 0, p ,  = 1. (25) 
29 Fluid Mech. 9 
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For x 1 p ,  and q, are functions of 6 only. The values of p, ,  p2,  q, and q2 are 
shown graphically for all values of 6 in figure 2. Table 1 gives algebraic forms for 
the limits 6 --f 0 and 6 --f 00. 

4. Discussion of the results 

come into consideration and we have, from (16), 
For x < 1 radiative effects are unimportant, since the (p , ,  ql) solution does not 

(26)  is the solution for a non-radiating medium. The condition x 
a sufficient condition for neglecting radiative effects. 

1 is therefore 

a 

42  
2 
4 
8 

10 
30 

100 

1.88 
1.67 
1-43 
1.21 
0-74 
0.22 

0-78 
0.62 
0.62 
0.41 
0.32 
0.24 

1.28 
1.62 
1-93 
2.42 
3-13 
4.49 

2.10 
1.19 
0-96 
0.83 
0.78 
0-77 
0.83 
0.90 
0.91 
0.97 
1.00 

1 

141.6 

- 
2f;b: 

21.22 
9.78 
4.82 
2.90 
2.02 
1-30 
1.16 
1.11 
1.02 
1.01 

TABLE 2. Numerical values for some important functions of [, for x $1. 
Blanks indicate that the quantity cannot be observed in practice. 

The situation is more interesting if x is large. Both solutions can be important 
and they have different phase lag and attenuation coefficients. For 6 < 2-8 
the amplitude [ , / (p2+q2) ]  of the (p, ,q,)  solution exceeds that of the (p2,q2)  
solution, while for =- 2-8 the position is reversed. Since the attenuation 
coefficients are not the same for the two solutions the relative amplitudes change 
with height. From figure 1, a, 9 a, if x 9 1 for all 6. Thus if the ( p 2 ,  q2) solution 
is the more important at one level it will be the more important for all higher 
levels. However, if the (p , ,  q,) solution is more important at some level there is 
always a higher level at which it will be overtaken by the (p2,q2)  solution and 
the character of the wave will then change. The changeover point (Q) will be 
determined by 

(P?+43aexP [-a,Ccl = (p;+q;)"xp C-azCcl. (27) 

The right-hand side of equation (28)  is a function of 6 only and some values 
are given in table 2. 
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The general solution for x % 1 does not lend itself readily to description. One 
course is to discuss the effective conductivities (k (phase) and k (amp)) based upon 
the gradient of phase (0) and the gradient of the logarithm of the amplitude 

%=- J SW 

dz 2k (phase)' 
d In IS] 
dZ 

= -  

According to (26), for x < 1 equations (29) and (30) will yield 

k (amp) = k (phase) = k 

in an atmosphere whose conductivity varies neither with time nor height. Under 
other circumstances (29) and (30) are formal operations, with no particular 
physical meaning, which are often used to describe observed temperature 
profles (Best 1935; Priestley 1959). 

If either the (pl, ql )  or the ( p 2 ,  q2) solution dominates, then from (lo), 

and 

where a stands for a, or a2 and b for b, or b,. Thus, 

k(amp) sw X -=-=- 
k 6 a 2 k ~ 2  2a2&' 

k(phase) =-=- sw X 
k 6b2k~,  2b2&' 

Table 2 shows values of 

The Eddington approximation as used by Brunt (1944) gives 

k (amp) k (phase) 
k k 

- _ _ ~  - - (X+1). -- 

(33) 

(34) 

(35) 

The results shown in table 2 demonstrate that for x % 1, (35) is correct in the 
limit [ -+ 00. 

5. Application to the atmosphere 

are 
Two definitions of the mean absorption coefficient, discussed by Goody (1953), 

and 

29-2 
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where 

v = frequency, 
K~ = Rosseland's mean (Kourganoff 1952, p. 237), 
K~ = Planck's mean (slightly modified from the definition of Michard 1949). 

Contributions to K~ come mainly from the strongly absorbing line centres, 
about which we have comparatively reliable information. Since the integral in 
equation (37) embraces each line completely, its value should not vary with the 
air pressure, since the integrated line absorption coefficient is independent of 
this parameter. Consideration of the data of Cowling (19501, interpreted with the 
help of the statistical model, and the data of Kaplan (1950) lead to 

(38) 

where pHsO and pco, are densities of water vapour and carbon dioxide in g ~ m - ~ .  

KP = ( 2 0 3 ~ ~ ~ ~  + 87pc0,) cm-l, 

Pressure Pco, (1) PESO (2) /Cp K ( p )  

(mb) (g em-9 (g (cm-I) (cm-I) 

1000 5 x 10-7 7 x 10-6 1.4 x 1-4 x 
100 6 x 10-8 2 x 10-10 4 x 10-1, 4 x  10-6 
10 8 x 10-9 2 x 10-1' 4 x 10-14 4 x 10-7 

(1) Assuming 2.6 x lo4 parts of CO, by volume (Gluckauf 1944). 
(2) Assuming 2 x 

(3) H,O contribution only. 
(4) H,O and C 0 2  contributions. 

parts of H,O by volume at 100 and 10 mb (Murgatroyd, Gold- 
smith & Hollings 1955), and lo-, parts by volume at 1000 mb. 

TABLE 3. Mean absorption coefficients. 

The integral in equation (36) is dominated by the small absorption coefficients 
between major bands. For water vapour the main contribution will come from 
the lop window. New values of the absorption coefficient in this region of the 
spectrum at atmospheric pressure have recently been measured (Roach & 
Goody 1958). The effect of the strong 15p band of carbon dioxide is to reduce 
slightly the effect of water valour by increasing K~ over a narrow region. For 

P water vapour alone 
KR = 0*21p~~~( - )  1000 cm-1, (39) 

where p is the pressure in millibars. The linear pressure factor is assumed, since 
we are here concerned with contributions from the far wings of pressure-broadened 
lines. 

We will limit our attention to ground level and, in order to have an idea of the 
magnitudes involved, we will take the harmonic mean of K~ and K ~ ,  

K = J ( K ~ K ~ )  N 4.5 x 10-6cm-1. 

Best (1935) gives values for k/s  computed from the amplitude and phase of the 
observed diurnal temperature wave near the ground which vary from 2 cm2 sec-1 
near z = 10 cm to 5000 cm2 sec-l near z = lo3 cm. We may adopt 

kls = 102 cm2 sec-1 
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as characteristic of the region. In  addition assume: 

e = BOOK, 

CT = 5.74 x 10-5 erg cm-2 sec-1 OK-4, 

rrQ = 5.6 x lo3 erg cm-2 sec-l OK-1, 

s = 1.36 x 104erg OK-l, 

o (diurnal) = 7-3 x 10-6sec-l. 

With these values 

From Table 2, for 
x = 120, 6 = 1.0. 

= 1 
Q J2x = J (~x)Kz,  = 1-21. 

z, = 1 x 103cm. Hence, 

Below this critical level, where the (pl, pl) solution will predominate, 

Above IOm, the ( p 2 ,  p2) solution will predominate and 

Brunt’s solution for this problem would be 

k (phase)/s = k (amp)/s = 1.2 x lo4. 

6. Conclusions 
There is a superficial resemblance between the behaviour of the effective con- 

ductivity predicted from this simple theory and that observed in the earth’s 
atmosphere. k is expected to increase rapidly with height, and to differ according 
to whether i t  is computed from the amplitude or phase. Moreover, since the 
diffusion of momentum is not directly affected by radiative transfer, its effective 
coefficient will differ from that for heat. All these features are observed in the 
earth’s atmosphere and they are usually explained on a purely dynamical basis. 
This investigation does not invalidate such explanations, but it does indicate 
a possible alternative mechanism which may play some role. A satisfactory 
treatment should consider all modes of heat transfer more realistically than in 
this paper. The crude approximations used here may, however, not completely 
obscure the broad physical features of the problem. 

Deep in the interior of a star, away from boundaries or any other imposed 
discontinuities, the Eddington approximation may be justified. Very different 
condi tions prevail in a planetary atmosphere, however, and the numerical results 
show clearly how unsatisfactory the approximation can be. 
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